Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let$$G$$be a split reductive group over the ring of integers in a$$p$$-adic field with residue field$$\mathbf {F}$$. Fix a representation$$\overline {\rho }$$of the absolute Galois group of an unramified extension of$$\mathbf {Q}_p$$, valued in$$G(\mathbf {F})$$. We study the crystalline deformation ring for$$\overline {\rho }$$with a fixed$$p$$-adic Hodge type that satisfies an analog of the Fontaine–Laffaille condition for$$G$$-valued representations. In particular, we give a root theoretic condition on the$$p$$-adic Hodge type which ensures that the crystalline deformation ring is formally smooth. Our result improves on all known results for classical groups not of type A and provides the first such results for exceptional groups.more » « less
-
Abstract. We study the extent to which curves over finite fields are characterized by their zeta functions and the zeta functions of certain of their covers. Suppose C and C ′ are curves over a finite field K, with K-rational base points P and P ′ , and let D and D ′ be the pullbacks (via the Abel–Jacobi map) of the multiplication-by-2 maps on their Jacobians. We say that (C, P) and (C ′ , P ′ ) are doubly isogenous if Jac(C) and Jac(C ′ ) are isogenous over K and Jac(D) and Jac(D ′ ) are isogenous over K. For curves of genus 2 whose automorphism groups contain the dihedral group of order eight, we show that the number of pairs of doubly isogenous curves is larger than na¨ıve heuristics predict, and we provide an explanation for this phenomenon.more » « less
-
Abstract An important open problem in supersingular isogeny-based cryptography is to produce, without a trusted authority, concrete examples of ‘hard supersingular curves’ that is equations for supersingular curves for which computing the endomorphism ring is as difficult as it is for random supersingular curves. A related open problem is to produce a hash function to the vertices of the supersingular $$\ell $$-isogeny graph, which does not reveal the endomorphism ring, or a path to a curve of known endomorphism ring. Such a hash function would open up interesting cryptographic applications. In this paper, we document a number of (thus far) failed attempts to solve this problem, in the hope that we may spur further research, and shed light on the challenges and obstacles to this endeavour. The mathematical approaches contained in this article include: (i) iterative root-finding for the supersingular polynomial; (ii) gcd’s of specialized modular polynomials; (iii) using division polynomials to create small systems of equations; (iv) taking random walks in the isogeny graph of abelian surfaces, and applying Kummer surfaces and (v) using quantum random walks.more » « less
-
Abstract We investigate a novel geometric Iwasawa theory for$${\mathbf Z}_p$$-extensions of function fields over a perfect fieldkof characteristic$$p>0$$by replacing the usual study ofp-torsion in class groups with the study ofp-torsion class groupschemes. That is, if$$\cdots \to X_2 \to X_1 \to X_0$$is the tower of curves overkassociated with a$${\mathbf Z}_p$$-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of thep-torsion group scheme in the Jacobian of$$X_n$$as$$n\rightarrow \infty $$. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of$$X_n$$equipped with natural actions of Frobenius and of the Cartier operatorV. We formulate and test a number of conjectures which predict striking regularity in the$$k[V]$$-module structure of the space$$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$$of global regular differential forms as$$n\rightarrow \infty .$$For example, for each tower in a basic class of$${\mathbf Z}_p$$-towers, we conjecture that the dimension of the kernel of$$V^r$$on$$M_n$$is given by$$a_r p^{2n} + \lambda _r n + c_r(n)$$for allnsufficiently large, where$$a_r, \lambda _r$$are rational constants and$$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$$is a periodic function, depending onrand the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on$${\mathbf Z}_p$$-towers of curves, and we prove our conjectures in the case$$p=2$$and$$r=1$$.more » « less
An official website of the United States government
